
Earn It - International Student Job
Platform

Design Project: Design Report

Authors:
Dimitar Popov
Wybe Pieterse
Pranav Chobar

Yordan Tsintsov
Stefan Ilich

Supervisor:
Luís Ferreira Pires

Abstract
This report is a part of the “Design Project” course at the University of Twente. It describes the
design process behind the “Earn It” international student job platform. The purpose of this
project is to provide easier access to jobs for international students in the Netherlands. It is a
collaborative effort with University of Twente students Khattab Raouf and Faisal Nizamudeen.
The reason behind Earn Its creation is the struggle that international students face when trying
to find employment as companies do not want to waste time and resources on applying for a
work visa. This project has found a way to avoid this problem by making use of
Self-Employment permits. The report describes all the phases of the project lifecycle - from
getting requirements to elaborating and discussing design choices.

1

Table of Contents
Table of Contents 2

Chapter 1 | Introduction 5

Chapter 2 | Domain Analysis 7
2.1 Domain introduction 7
2.2 General Knowledge of the Domain and Current Solutions 7
2.3 Software Environment 8
2.4 Stakeholders 8

2.4.1 Students 8
2.4.2 Companies 8
2.4.3 Client 8
2.4.4 Development Team 8

Chapter 3 | Requirements Specification 9
3.1 Project Management 9
3.2 Requirement Formulation 9
3.3 Requirement Prioritization 10
3.4 User Requirements 10

3.4.1 Must haves 10
3.4.2 Should haves 11
3.4.3 Could haves 13

3.5 System Requirements 13

Chapter 4 | Architectural Design 14
4.1 Preliminary Design Choices 14

4.1.1 Front end 14
4.1.1.1 Vue.JS 14

4.1.2 Back end 15
4.1.2.1 Spring Boot 15
4.1.2.2 PostgreSQL 16

4.1.3 Communication 17
4.1.4 Firebase 18

4.1.4.1 Firebase Storage 18
4.1.4.2 Firebase Authentication 18
4.1.4.2 Firebase Costs 18

4.2 System Overview 19
4.3.1 Home Page 20

2

4.3.2 Registration Page 20
4.3.3 Login Page 20
4.3.4 Student Dashboard page 20
4.3.5 Student Applications 20
4.3.6 Company Dashboard page 21
4.3.7 Post Vacancy page 21
4.3.8 Profile Page 21
4.3.9 Admin Dashboard page 21

Chapter 5 | Detailed Design 21
5.1 System Description 22

5.1.1 Schema Design 22
5.1.2 Relationship between Tables 23
5.1.3 Keys 24
5.1.4 Routing 24
5.1.5 Token Authorisation 25
5.1.6 Spring Security Architecture 27
5.1.7 Back End Architecture 29

5.2 Design Choices 30
5.2.1 Page Navigation 30
5.2.2 User registration 30
5.2.3 Vacancy lifetime 30
5.2.4 Student dashboard 31
5.2.5 Company details 31

Chapter 6 | Testing 32
6.1 Test Approach 32

6.1.1 End-to-end Integrated Tests 32
6.2 Technology 32
6.3 Test Cases 33

Chapter 7 | Future Work 34
7.1 Features 34

7.2.1 Reviewing 34
7.2.2 Filtering 34
7.2.3 Notification 34
7.2.4 Login with third-party services 34

7.2 OpenAPI Specification 34

3

Chapter 8 | Evaluation 36
8.1 Planning 36
8.2 Responsibilities 37
8.3 Team Evaluation 38
8.4 Conclusion 38

References 39

Appendices 40
Appendix A 41
Appendix B 47

4

Chapter 1 | Introduction

Finding a job has always been an issue for students all over the world and it is especially
harder for those that study abroad. Studying abroad has existed for centuries and it has always
had the same issues throughout the years when concerning searching for work. Foreign
students usually do not have any professional contacts in the country in which they study, and
they must further face additional barriers such as language and cultural differences.
Furthermore, they are required to have a work visa or some other type of permit to find a job.
This leads to companies hiring mostly native students as it is an easier and less-expensive
process. These issues can be mostly seen in countries with many foreign students such as the
US, the Netherlands, the UK, and Germany.

The problem of finding work permits has been especially painful for the Netherlands. Over the
past 16 years, the Netherlands has been growing rapidly in popularity for international
students. For the 2021/22 academic year, 115 thousand students from abroad were enrolled in
higher education which is 3.5 times more than were in 2005/06, when the enrolled students
were thirty-three thousand [1]. A vast majority of these people are non-EU students, which
means that for them to land a job, they must first be granted a work visa or some other similar
type of permit. This creates a significant issue as EU and Dutch students would be preferred
over international ones. Moreover, this leads to foreign students having fewer opportunities in
a career aspect and causing unnecessary financial difficulties for them.

For these reasons, University of Twente international students Khattab Raouf(Earn It Chief
Executive Officer) and Faisal Nizamudeen(Earn It Chief Technical Officer) produced the idea
of Earn It - a start-up from the Netherlands that aims to connect international students with jobs
in their field of study. Earn It makes use of self-employment permits to avoid the annoying
problem of requiring a work visa to start a job. By using Earn It companies can flexibly and
efficiently hire international students without concerning themselves with the paperwork. At
the same time, students have a fast way of access to a list of positions related to their field of
study for which they can enrol.

The start-up has several goals and motivations. One of the goals is to help increase the chances
of international students finding a job and make the overall process easier and faster. Another
reason is that this project also allows companies to hire foreign people and thus increase the
pool of candidates for job vacancies which can help find an appropriate person for the
requested job. Moreover, by diversifying their workforce, companies could improve their
efficiency and productivity as studies suggest [2].

5

The report goes through the whole project lifecycle process. Chapter 2 is an analysis of the
system domain. Chapter 3 is a discussion of the system proposal and how the system
requirements were decided. Chapter 4 is a thorough analysis of the requirements and
specifications of the whole platform including must, should and could haves. Chapter 5 goes
over the architectural design of the system - what frameworks, libraries and other types of
technologies were used for the project creation and why were they chosen for the system.
Chapter 6 covers the project design and how the technologies mentioned in chapter 5 were
incorporated. The testing aspect of the project is focused on in chapter 7. It also discusses the
testing approach, technologies used and the test results. In chapter 8 possible future
improvements and work are covered. Furthermore, the project integration is discussed. Lastly,
Chapter 9 gives an evaluation of the project lifecycle by discussing the project planning and
results. A team evaluation is also provided. Additionally, the final chapter contains a
conclusion of the overall work process.

6

Chapter 2 | Domain Analysis

Domain analysis is a process in which information used in developing software systems is
identified, captured, and organised so that it can be made reusable for the creation of any future
systems [3]. This chapter discusses the domain of the system and its stakeholders. All essential
information is documented and the context in which the software system is built is thoroughly
explained. This was done to ensure that the development was made easier and reusability and
future development were guaranteed to be more plausible.

2.1 Domain introduction
The domain in which this system will be applied concerns the hardships that students in the
Netherlands face when looking for jobs related to their field of study and in particular, the
adversity faced by international non-EU students. With international students constantly
increasing and non-EU students having difficulty obtaining work visas, job opportunities are
becoming fewer and fewer. This problem led to the birth of Earn It - a platform where students
can search for jobs in their field of study and apply for work vacancies. The purpose of Earn It
is to support students in finding a job to gain experience within their field of study and support
companies in finding suitable employees.

2.2 General Knowledge of the Domain and Current Solutions
The Netherlands requires non-EU residents to have a work visa to be able to apply for jobs. To
avoid the paperwork and administrative chores, non-EU students can use self-employment
permits so that companies can be more prone to hire them. However, current job-seeking
platforms do not take that logistical process into consideration and students are treated as any
other potential employee. Furthermore, a platform that is made specifically for students
nationwide is yet to arise. Thus, a platform that utilises self-employment permits should be
designed to help students find a job while simplifying the job-seeking process for non-EU
students. Moreover, to avoid just shifting the disbalance in the opposite direction, such a
platform should still accommodate all other types of students. However, the legality of the use
of such self-employment permits could pose a problem to the client but is outside of the scope
of the development team in this module. The team’s objective is to provide the client with a
working system that fulfils their requirements and is not concerned, nor responsible for any
legal issues regarding the future of this project.

7

2.3 Software Environment
Before the project group had a meeting with the company Earn It, some specifications were
published in the project proposal document. The proposal document contained the key aspects
of the system and its technical description. Those aspects were expanded upon in a meeting
with Earn It and are shown in the requirements section of this report. In the technical
description, it is stated that the technical domain that this system would be functioning is
flexible. This meant that we were free to decide the frameworks we would use for the front end
and back end. The only requirement that Earn It had was that the front end and back end would
communicate with REST API calls. We decided to use modern technologies that allow for
efficient and fast implementation of the system while enabling easy scalability in the future.

2.4 Stakeholders

2.4.1 Students
Students will use the platform to search and apply for jobs from vacancies posted by
companies. They can upload their CV, skills, and education on the platform so that companies
can check if they meet the necessary criteria for the vacancy they are applying to.

2.4.2 Companies
The companies will use the platform to post vacancies for jobs. They should be able to accept
and deny applications from students for the offered jobs.

2.4.3 Client
The client is the initiator of the project. In this case, it is the start-up organisation Earn it. The
purpose of this organisation is to provide students with an uncomplicated way to apply for jobs
and to help companies to find student employees more efficiently. The client gives input on
how to design the system. Earn It gives feedback and ideas on how to change/improve the final
product.

2.4.4 Development Team
These are the people that implement the software system. They provide a functional online job
platform for students as an end product. The team actively communicates with the client to get
feedback on the progress of the system implementation and to check if styling changes are
necessary, whether new features should be added, or whether the implemented

8

Chapter 3 | Requirements Specification

3.1 Project Management

To develop this project the team had access to weekly meetings with the client to evaluate the
system's progress, stay within the scope and determine priority. To accommodate for potential
weekly changes, it was chosen to use Agile practices to manage the project. As the meetings
with the client are weekly, it was chosen to go for a sprint length of 1 week so that for each
meeting there would be measurable progress. In practice, this meant that the entire team would
have meetings twice a week to discuss processes and the sub-teams would have meetings of
their own, so including the meeting with the client and supervisor, the team had about 3
meetings a week. The sub-teams that were mentioned earlier are the front-end team and the
back-end team, it was decided to split these up so that people could specialise and focus on
their experience and qualities instead of doing all facets. To keep the front end and back end
compatible with each other the project started by designing a database and having a protocol
document where expected behaviour for both sides would be specified.

3.2 Requirement Formulation

For establishing the requirements of the application there was extensive communication with
the client to define the scope of the project and what was expected. By specifically
communicating with the client about the requirements to have the developers on the same line
it resulted in an accurate scope of the project with detailed requirements to not disappoint the
client nor make the developer team work unnecessarily. To achieve these detailed requirements
specific guidelines were set, these were based on the SMART guidelines [6] often used in
project management. The guidelines are specified below:

● Specific
○ Each requirement needs a stakeholder and a detailed description

● Measurable
○ Each requirement needs to be able to be tested

● Attainable
○ Each requirement needs to be possible to implement within the time restriction

● Relevant
○ Each requirement needs to be within the scope of the application

9

3.3 Requirement Prioritization

During these meetings with the client the requirements were also prioritised, this was done
using “must haves”, “could haves” and “should haves”. This tells the project team what the
importance is to implement a requirement, must-haves are requirements that are needed for the
project to reach a minimum viable product (MVP) state and are the most important. This is
then followed by “could haves” which are important but not essential for the functioning of the
application and “should haves” which are the least important requirements.

3.4 User Requirements
In this chapter all the requirements for each stakeholder have been specified combined with
their implementation details, all must-have requirements have been implemented and have no
details for that reason.

3.4.1 Must haves

1. A student must be able to register to the platform with a profile containing their
personal information and extra details

2. A student must be able to upload their CV

3. A student must be able to view and update their profile

4. A student must be able to log in and register with their email and password

5. A student must be able to see vacancies that they can apply to

6. A student must be able to apply for a vacancy posted by a company

7. A student must be able to see vacancies that they have applied for

8. A student must be able to see the application status of vacancies they have applied for

9. A company representative must be able to register to the platform with a profile
containing their company details and a contact person

10. A company representative must be able to view and update their profile

10

11. A company representative must be able to log in and register with their email and
password

12. A company representative must be able to post vacancies

13. A company representative must be able to see students who have applied for a vacancy

14. A company representative must be able to accept and reject students who applied for a
vacancy

15. A company representative must be able to download the CV of a student who has
applied for their vacancy

16. A company representative must be able to view all the vacancies they have posted in
the past

17. A visitor to the platform must be able to view a homepage where they can read
information about the platform and register

18. An Earn It representative must be able to log in as an administrator

19. An administrator must be able to view how many vacancies have been posted

20. An administrator should be able to see how many students and companies are registered
on the platform

3.4.2 Should haves

1. A company representative should be able to upload their logo
Implemented

2. A student should be able to retract their application to a company
Not implemented, could not be implemented within the time restriction

3. A student should be able to fill in the hours they have worked for a company
Implemented

4. A company representative should be able to view the hours a student has worked for the
company

11

Implemented

5. A company representative or student should be able to export invoices based on the
hours this student has worked for this company
Only students can export their invoices, companies cannot

6. A student should be able to filter vacancies based on their study
Not implemented, could not be implemented within the time restriction, specified in
chapter 7

7. A student should be able to rate a company they have worked for with a 1–5-star rating
Not implemented, could not be implemented within the time restriction, specified in
chapter 7

8. A company should be able to rate a student they have worked with a 1–5-star rating
Not implemented, could not be implemented within the time restriction, specified in
chapter 7

9. A student should be able to sort vacancies based on ratings of a company
Not implemented, could not be implemented within the time restriction, specified in
chapter 7

10. An admin should be able to delete a student, company and vacancy
User interface for this is implemented, but needs a little more work

11. An admin should be able to edit a student, company and vacancy
Implemented

12. A student or company representative should be able to delete their account
Implemented

13. A student or company representative should be able to update their password
Not implemented, could not be implemented within the time restriction

14. A company representative should be able to delete a vacancy from the company
Not implemented, could not be implemented within the time restriction

12

3.4.3 Could haves

1. A student or company representative could be able to add a review with more details to
their star rating
Not implemented due to prioritisation of other requirements, specified in chapter 7

2. A student or company representative could be able to log in with Google or Microsoft
accounts
Not implemented due to prioritisation of other requirements, specified in chapter 7

3.5 System Requirements
This chapter specifies specific requirements that the system must meet like security and
specific technical requirements from the client.

1. No one must be able to tamper with the communication
Implemented, security is specified in chapters 4 and 5

2. The system front end must restrict pages to only be viewed by users with the correct
permissions
Implemented, explained in chapter 5.1.4

3. The system front end must redirect users if pages with incorrect permissions are being
accessed
Implemented, explained in chapter 5.1.4

4. The system must not store passwords in a way that is readable
Implemented, by using Firebase Authentication (chapter 4.1.4.2)

5. A user should only be allowed to perform actions in accordance with their permissions
Implemented and expanded upon in chapters 4 and 5

6. Front end and back end must communicate using a REST API
Implemented, chapter 4.1.3

13

Chapter 4 | Architectural Design

In the following chapter, it will be explained how all the components that are used in the
application fit together, suit the design and fulfil the requirements. The diagram above shows
how the system architecture of the application is defined. The application has a front end, and a
back end, and uses Firebase and a REST API. It starts with the client being authenticated by
Firebase; this allows the front end to send HTTP requests to the back end [7]. The REST API
handles this communication. Then Firebase is used to authorise all requests the back end
receives. After authorization, the server executes those requests by interacting with the
database after which it returns a response to the client using the REST API. In addition,
Firebase is also used for the storage of larger files like the CVs of students and logos of
companies. Figure 1 shows a visual representation of the system design.

Fig. 1. System design

4.1 Preliminary Design Choices

4.1.1 Front end

4.1.1.1 Vue.JS
For the front end the team wanted to use a front-end development technology based on
JavaScript (JS) because the developers had previous experience working with this scripting
language thus the learning curve would not be as steep as other options would potentially be.
Currently, the most popular technology is the React JS library [5] so choosing that would have

14

been a reasonable option but the team chose instead to go with the Vue.JS framework which is
the fifth most popular JS front-end technology. A reason for this is that one of the team
members already works daily with this framework, more technical advantages of why this
technology was chosen are explained in chapter 5.
Requirements that the front end had to meet for the team were that it would be
high-performance, simple and would be reusable. The high-performance requirement came
from the fact that if this product ever grew to be big then slow performance could become an
issue to grow this product to this scale, so using one of the fastest and lightweight frameworks
around this requirement is met. The need for simplicity came from the fact that the
development team is an inexperienced team consisting of students and as reaching an MVP
was a high priority for the project a framework with a high learning curve could not be chosen.
The reusable requirement works together with the other two requirements, having reusable
components in the application reduces the complexity of the program as it is easier to keep the
code readable and reduces the amount of repetitive coding which in turn makes the application
better maintainable.

4.1.2 Back end
For the back end, we used Java Spring Boot for developing a REST API with an Apache
Tomcat server. A PostgreSQL database was used to store information related to the system.
The database was interacted with via Java Spring Data JPA. Google Firеbase was used for
authentication and authorisation purposes as well as storing files such as the student CV PDFs.

4.1.2.1 Spring Boot
It was decided to use Spring Boot for this project because of its many advantages over other
solutions. Some of them are as follows:

● Ease of use
● Reduction of development time
● Potential for increased productivity in development
● Simplicity of scalability
● Minimal initialization of the project
● Minimal configuration - avoids a complex XML configuration
● Severe reduction of required boilerplate code
● Spring Data integration, which simplifies interaction with the database dramatically
● Spring Security/Firebase Authentication integration

15

● Maven integration
● Provides an embedded HTTP server
● The application can be simply run

Spring Boot utilises annotations for binding requests to controllers and handler methods in
addition to binding HTTP request parameters to method arguments. This conceptually bridges
the front end and the back end, resulting in much shorter, cleaner, simpler, and
easier-to-understand source code, which consequently makes the project easier to collaborate
on and scale. Spring Initializer generates a Spring Boot project by providing a graphical user
interface that allows a user to specify the required Spring Boot version, the project metadata as
well as all the dependencies the project needs, greatly simplifying the initialization of the
project. The Maven integration and provision of an embedded Tomcat server greatly simplify
the deployment process. The former also provides a simple way to manage the project, from
building it to documenting it.

As previously mentioned, Spring Boot annotations massively reduce the amount of boilerplate
code, which provides the ability to implement functionality much faster. However, this is not
their only benefit - by automating a large portion of the work done by the server, Spring Boot
leaves less room for error than alternatives like managing Tomcat directly, while providing the
same amount of flexibility if needed. This leads to much less time fixing bugs and testing basic
tasks such as connecting to the database or editing a single row from some table.

There were some risks in developing the project using a framework that was not used during
the bachelor of Technical Computer Science at the University of Twente. Using an unfamiliar
and new framework required developers to learn while working on the project itself which took
more time and slowed down the work speed and efficiency. Furthermore, the team had to find
its study materials as the Bachelor program does not offer any information on the technology
that was used. However, the many advantages of the Spring framework benefited the workflow
of the team immensely, while enabling the team to make an application that the client can
expand simply and easily.

4.1.2.2 PostgreSQL
For storing application data, there were many choices for a relational database management
system, such as MySQL, PostgreSQL, and MongoDB. When choosing, it was determined
which one will fit the project requirements best, and support seamless scalability, while also
not having a significant learning curve, allowing to implement the project without jeopardising
finishing the project on time. In the end, the decision was that PostgreSQL is the most suitable
one.

16

In comparison to MySQL, PostgreSQL supports more complex data types and allows objects
to inherit properties. This property is especially useful since the project will use UUIDs
(Universally Unique Identifiers) of 128 bits as unique IDs for every student, company, and
account. UUIDs can be easily stored in PostgreSQL databases without any problems. While
UUIDs are an available feature in MySQL as well, they cannot be directly assigned to a
column as a datatype. First, the ID should be set as a sequence of 128 binary digits and then ran
through a function that transforms it into 32 hexadecimal characters, which is the traditional
format of a UUID [4]. This makes PostgreSQL preferable over MySQL as it can assign UUIDs
directly as datatypes in a column which saves time and complexity. What’s more,
PostgreSQL’s wider variety of data types ensures a much easier scalability process in case the
project becomes more complicated in the future. As the project is very specific, a lot of
particular data types might be needed for future functionalities, and using PostgreSQL is an
excellent way of future-proofing the project for such functionalities.

Furthermore, PostgreSQL is an ideal choice for hosting a database as a company scales
(enterprise scope) when compared with MySQL. PostgreSQL supports complex queries and
frequent write operations, which MySQL does not. Moreover, PostgreSQL is designed for
large database management and has great utilisation of indices and excellent support for
complex queries, allowing custom optimization when the application becomes popular and
gains a massive number of users.

Another massive advantage of PostgreSQL over its alternatives is that it is an object-relational
programming language (ORDBMS). This is an excellent fit for Spring Boot, the Java
framework of choice, as it allows for direct manipulation of the database using the framework
and creates a bridge between Java’s object-oriented programming and the database model.

Lastly, PostgreSQL offers high stability due to its complete compliance with ACID (Atomicity,
Consistency, Isolation, Duration) properties. ACID properties ensure that no data is
miscommunicated or lost during event failure [15].

4.1.3 Communication
In this section, the communication between the front end and back end will be further
elaborated on. As mentioned in the introduction we have a REST API that serves as the
communication link between our client and server. REST is an architectural style that defines a
set of rules for creating web services. Those services allow the client to send requests to the
back end when the user does specific actions like creating a new user, applying to a vacancy, or
accepting a student for a vacancy. Below you can find the protocol document that shows all the
possible requests the front end can make to the back end and the appropriate responses that will
be given. The protocol document is shown in Appendix B.

17

4.1.4 Firebase
As can be read in the “Requirements Analysis” section in this document there were some
security, login, and storage requirements for this application. Namely that requests are
authenticated, passwords protected, and users can log in using third-party applications and
upload a CV. As no developers of the team had experience building an application that could
utilise storage while still being scalable the team did research into which solutions were
suitable for this. The storage solution that was eventually chosen was Firebase Storage as it
would offload the bandwidth load needed for uploading and downloading files to another
service that would increase the scalability aspect of the application as the storage and
bandwidth capacity would be able to grow as the application grows. As the documentation of
Firebase was written extensively which made it easy to implement it was also chosen to use
Firebase Authentication for the security of the application. The costs of these services will be
discussed in a section below and were agreed upon with the client.
All these advantages together make Firebase cost-effective because by using an existing
platform with good documentation the development time is reduced and reduction of bugs and
errors this all adds to the scalability and maintainability of the application.

4.1.4.1 Firebase Storage
The front end of the application interacts with Firebase using the Firebase JS SDK which
provides robust operations for uploading and downloading files. This means that no matter the
network quality these operations restart where they are stopped if they are interrupted reducing
the amount of bandwidth needed. This in combination with the scalability of Firebase storage
and easy integration with Firebase Authentication to secure the files makes it a good fit for this
application. So, in the application Firebase Storage is used to store the CV of students and
logos from Companies.

4.1.4.2 Firebase Authentication
Along with Firebase Storage the application also makes use of Firebase Authentication. This
has not only the security advantages for Firebase Storage, but also provides a way to quickly
set up an expansive login and registration method. The application currently only features the
ability to sign up and log in with a password and email but integrating services like Google and
Microsoft Sign-in is little work by the Firebase JS SDK. By using this service the passwords
are securely encrypted and stored on a different server meaning that the consequences of a leak
are reduced. Furthermore, would it be easy to integrate multi-factor authentication in this
application with Firebase as there is extensive support for OAuth 2.0 and OpenID connect.

4.1.4.2 Firebase Costs
Firebase is a “pay as you go” platform meaning that the platform only charges for what is
used, the platform starts with a free tier called “spark plan” which supports 50k monthly active

18

users (MAU) and 5GB of storage. After that, you pay between $0.0025 - $0.0055 per MAU
depending on the amount of MAUs the application has. For Firebase storage it costs $0.026 per
GB stored, $0.12/per GB downloaded, $0.05/10k upload operations and $0.004/10k download
operations. A quick sum for the costs is outlined below as per the current pricing of Firebase.

Students Cost Amount Total Usage Total Cost

Monthly Active Users
$0.0055/MA
U 10,000 - $55

Upload operations/MAU $0.05/10k 2 20,000 $0.1

Download operations/MAU $0.004/10k 2 10,000 $0.008

Download bandwidth cost $0.12/GB 2 * 5MB * 10,000 100GB $12

Storage used/MAU $0.026/GB 5MB 50GB $1.3

Total: $68.408

Companies Cost Amount Total usage Total Cost

Monthly Active Users
$0.0055/MA
U 10,000 - $55

Upload operations/MAU $0.05/10k 1 10,000 $0.1

Download operations/MAU $0.004/10k 25 10,000 $0.4

Download bandwidth cost $0.12/GB 25 * 5MB * 10,000 1.25TB $1500

Storage used/MAU $0.026/GB 5MB 50GB $1.3

Total: $1556.8

Fig.2. Firebase costs

This cost overview is based on the estimation that a student would upload and download his
CV twice a month, for companies this estimation is set that they download 25 CVs a month.
The CV and logo size estimation would be 5MB as that is what the limit of the application is
set at and would be a reasonable assumption for a medium-sized pdf so the calculation would
be the maximum cost per user and assumes that each MAU reaches those downloads.
Earn It expects that there would be around twenty students for each company on the platform
meaning that if the “spark plan” from Firebase is exceeded the cost for one hundred students
and five companies would be a total cost of $16,25 of which $15,56 is for the five companies.

4.3 System Overview
Our system is defined for three types of users: students, companies, and admins. The following
sections will describe all the pages and features the system contains and you will be able to
understand what each type of user can do.

19

4.3.1 Home Page
At first, users arrive at the home page. There they can read the benefits of signing up for the
platform and register as a student or representative of the company. They can also decide to log
in with their already existing account.

4.3.2 Registration Page
When a user enters this page, they have the option to either register as a student or a
representative of a company. There is one registration page for both parties, but companies and
students need to enter different data due to their different natures. For example, students are
going to upload a CV for their profiles while on the other hand companies will be required to
upload the logo of their company. For these pages, there are checks if the user entered the
correct data in the fields meaning that a password needs to be at least eight characters long and
a CV must be uploaded. For each registration field, there is such a check, when a user registers
it is also checked if the email address is not yet registered.

4.3.3 Login Page
On this page, the user can log in with their email and password. When logging in the user will
first be authenticated by Firebase, if Firebase returns a confirmation the user is logged into the
back end with a Firebase token. The authentication is further described in Chapter 6 Detailed
Design.

4.3.4 Student Dashboard page
Our landing page for students is the Student Dashboard Page. On this page, students can see all
the vacancies posted by companies. Each vacancy contains the needed information to make a
decision like company, location, hourly wage, and benefits. Through this page, students can
apply for a vacancy and see it on their Student Applications page.

4.3.5 Student Applications
On this page, Students can see all vacancies they have applied for. Here they can see their
status regarding this page (Pending, Accepted, Rejected). This status will be set to pending
after they apply for a vacancy and then it can only be changed by a company depending on
their decision on the application. Furthermore, after students get accepted, they will have two
more features enabled. They will be able to enter their hours for the current month and send
them to their employer for review. After that, they will be able to export their monthly invoice
containing their calculated income.

20

4.3.6 Company Dashboard page
This is the landing page for companies. They will be able to review all their posted vacancies
and for every vacancy, they are going to see who has applied and then accept or reject them.
Furthermore, they can download the CVs of all of their applicants to review their education
and job history so they can decide whether to accept or reject them. If they accept someone for
a vacancy, he will not appear as employed for the vacancy and the company will be able to
review the monthly hours he enters.

4.3.7 Post Vacancy page
If a company enters this page, they can post a new vacancy that will appear for all students,
and then they will be able to see this vacancy and the applicants on the Company Dashboard
page.

4.3.8 Profile Page
Both companies and students have a profile page where they can see all of their current data
and edit it to their preferences. The page is different for companies and students. For example,
students can download their CVs or upload new ones while companies cannot.

4.3.9 Admin Dashboard page
Finally, there is the Admin Dashboard page which is the only page admin users can access.
This page consists of statistics regarding the application like the number of users for each
category and all posted vacancies. The admin user is also allowed to change or delete students,
companies, and vacancies.

21

Chapter 5 | Detailed Design

This chapter will describe our system in detail and it will discuss all the different design choices
we came across throughout the project.

5.1 System Description

Fig.3. System class diagram

The class diagram above represents the database of the system. Each class in the diagram is a
table in the database. The class diagram contains 7 classes, “Account”, ”Student”,
”Company”, “Admin”,” Review,” Application”, and ”Vacancy”. The class diagram and
relationship between the classes are explained in detail below:

5.1.1 Schema Design
Tables for the database were designed by examining the functional requirements and scope
while taking the simplicity of query implementations in mind. In the next few paragraphs, all

22

the tables that the project required will be listed. In the section after that, all the relationships
between the tables will be listed.

The functional requirements clearly indicate that a user should be able to register as a student
and company. Furthermore, a special admin user should be added to the database. Therefore,
Student, Company and Admin tables were defined.

All types of users should have an account that they can log in to via their email and password,
regardless of what type of user they are. Thus, to mitigate the need for email and password
fields in the tables of all user types, an Account table was created. Each user (Student,
Company, Admin) has one account. The relationship between the user and the account is
represented in the class diagram with each user having a one-to-one relationship with the
Account class.

The Аccount entity that the Student, Company and Admin have was used instead of a general
User entity that the Student and Company would extend, to make the overall model and
subsequent queries simpler.

Each company should be able to post multiple vacancies for their open job positions.
Furthermore, each student user should be able to apply for a certain vacancy that is listed by a
company. Thus, a Vacancy table was defined. This is indicated in the diagram with the
Company table having a one-to-many relationship with the vacancy class.

In order to bridge the relationship between Student and Company tables, an application table
was defined. As a student can post many applications for many vacancies, the Application
table stores the ID of Student and Vacancy. In the class diagram, the relationship is indicated
with a one-to-many relation between Student and Application. Furthermore, each vacancy can
have many applications from different students, which is indicated by a many-to-one relation
between the Application and Vacancy table.

Lastly, every company and student should be able to review each other. Therefore, a Review
table that stores the IDs of the company and student was defined. To avoid using two tables,
one for reviews from students to companies and one for reviews from companies to students,
the Review table has a property that indicates the direction of the relationship. Each student
and company can write many reviews. This relationship is indicated by the one-to-many
relation between the student/company table with the review table.

23

5.1.2 Relationship between Tables
To clarify, these are all the relationships between the tables in the database:

● Each type of user (student, company and admin) can have only one account.
● One company can have many vacancies
● One student can have many applications (for different vacancies)
● One vacancy can have many applications (from different students)
● One student can review many companies
● One company can review many students

5.1.3 Keys
Primary keys are unique identifiers of each record in the database, whereas foreign keys are a
link to properties of different tables. All of the above-mentioned relationships are formally
defined using foreign keys. These are the indexes and foreign key constraints:

● Student - student_id (Primary Key), account_id (Foreign Key to Account).
● Company - company_id (Primary Key), account_id (Foreign Key to Account)
● Admin - account_id (Foreign Key to Account)
● Vacancy - vacancy_id (Primary Key), company_id (Foreign Key to Company)
● Application - application_id (Primary Key), student_id (Foreign key to Student),

vacancy_id (Foreign key to Vacancy)
● Review - review_id (Primary Key), student_id (Foreign Key to Student), company_id

(Foreign Key to Company)

5.1.4 Routing
As the JavaScript framework that was chosen for this project was Vue.JS it was opted to also
include the router library that is officially supported by Vue.JS namely Vue Router Library.
This library handles all the “routing” for the front-end application, this means that if a user
needs to be forwarded from page A to page B this library is used to handle this functionality.
This specific library was chosen as it has a simple integration with the Vue.JS framework
meaning that the code stays clean because it shares the same design pattern. The function of
this router is not only to get a user from page A to page B but also to make sure that a user has
the permissions to do so and if not, they are properly redirected, as explained below. This
chapter also contains a diagram where a visual representation of the routing is shown.

The implementation of the router is in /source/router/index.js here is where the router is
initialised and a beforeEach is added which is a so-called global navigation guard which can
redirect or cancel the navigation process. This specific guard is called every time navigation is

24

triggered and where it is checked if a user should be allowed with their user status, meaning
company, administrator, or student, to go to that navigation. If the user is allowed then a
confirmation is returned and the navigation will not be redirected or cancelled but is allowed to
continue, if the user is not allowed to access the next navigation, then they are redirected to an
appropriate page.

In this implementation the focus was on scalability and maintainability, meaning that if a new
page were to be added it would require little effort and restrictions to this page could easily be
added. This was achieved by adding permission fields to routes which can easily be used to
filter users based on permissions. An example of this is “authRequired”, if this value is true
then a user must be logged in to access the route, if it is undefined then it does not matter but if
it is false then a logged-in user is not allowed to access the page. For example, the login page
should only be accessed by a user who is not logged in.

Fig.4. Routing activity diagram

25

5.1.5 Token Authorisation
Authorization is a process where the resources, services and functions have restricted access. In
this case, students, companies, and administrators are in distinct roles which have different sets
of permissions to go through the web application. The authorization of the requests was
implemented using JWT (Java Web Token) requests API implemented in Spring Boot and
Firebase.

According to [8], a Java web token (JWT) is described as a secured way of transmitting
information in the form of a JSON object. The information in a JWT is trusted and secured
since the token is kept secret using a secured hashing algorithm.

In the code, Google’s Firebase ID token was used as the JWT for the web application. Firebase
uses the RS256 algorithm for hashing tokens which ensures security. According to [9], RS256
is an asymmetric encryption algorithm that uses a private key to hash the token and the
authenticity of the token can be verified using a public key.

If the user wants to access a resource, the user must send a request to the server with a token in
the bearer schema for authorization. The server in the back end check’s for the token in the
authorization header of the request. The token is extracted from the header and sent to the
server for further processing. Requests that don't contain the token are rejected.

Each token must go through a token filter where the tokens get verified. After verification, the
request can proceed further.

26

Fig 6. Token Authorization Diagram

The figure explains the authorization system discussed in the above sections. The figure
contains 5 lifelines, “FrontEnd”, “TokenFilter”, “Servlet”, “Login Controller” and “API
Controllers”.
The “FrontEnd” sends CRUD (Create, Read, Update, Delete) HTTP requests to the back end.
First, the request goes through the token filter.

As explained in section 6.2.2, the request must contain a firebase id token in the bearer token
part of the HTTP request. The token gets verified in the token filter. Requests containing an
invalid token are rejected. If the token is valid then the request passes through the spring
security filters and goes into the “Servlet”.

The “Servlet” is an apache tomcat java servlet that processes HTTP requests and manages
communication between the front end and back end of a web server. The “Servlet” checks the
URL of the request. The request containing the login URL (“/API/login”) is handled by the
login controller. The login controller sends “user details” back to the servlet from which it gets
sent back to the front end.

The front end requires “user details” to distinguish between the type of user (“Student”,”
Company” or “Admin). Other valid requests are passed to the “API Controllers”. “API
Controllers” are REST controllers in the spring boot framework which process the incoming

27

requests and transform them into a model and return a view [11]. Each controller class in
spring boot has multiple URLs mapped to them.

The “Servlet” checks the URL in the request and sends the request to an appropriate controller.
The controller processes the request and sends back a response (containing data) to the servlet
which gets passed on to the front end. If the servlet decides that the URL is invalid, the servlet
sends back an error message to the front end.

5.1.6 Spring Security Architecture
Spring security architecture works in the form of filters. The request passes through a filter
chain before reaching the servlet. Each filter in the chain can either process the request and
pass it on to the next filter or terminate the request. Authorization of the incoming requests
occurs in the filter chain. Spring boot uses an authorization filter to support the authorization of
incoming HTTP requests [10]. A token filter was designed which parses the token in the
incoming HTTP request.

28

Fig. 5. Spring Security Filter Chain

A security configuration class was designed in Springboot to control the security measures in
the application. The class is located in the security folder with the name “SecurityConfig”. The
security configuration extends WebSecurityConfigurerAdapter.

WebSecurityConfigurerAdapter contains methods that allow customising HTTP security [12].
HTTP security allows configuring web-based security for specific HTTP requests. The
extension of WebSecurityConfigurerAdapter class allows for the customization and
configuration of HttpSecurity. This is done by overriding the configure method in the security
configuration class.

CORS (Cross-origin resource sharing) is disabled to prevent requests originating from different
origins. Disabling CORS only allows requests that originate from the host. Enabling CORS
will give rise to vulnerabilities that can be exploited through cross-origin requests.
Unauthorised requests are handled with the HTTP method of exception handling. Endpoints
are configured to allow entry of CRUD and login requests only. Finally, the session is set to
stateless to prevent creating any sessions (and attacks such as session fixation attacks) on the
server.

29

5.1.7 Back End Architecture

Fig. 7. Back end architecture

In this project, a RESTful application was created using the Spring Java-based open-source
framework. Spring Boot was used to create a REST API to establish communication between
the client and the Apache Tomcat server over HTTP. Once the client sends an HTTP request,
the API is called from the back end, which calls the server. Via a controller class’ handler
methods, the server then performs all the business logic via services and returns the result to

30

the client. Direct communication with the database is established via repositories that the
services use, which will further explore in the next section.

First off, the client sends an HTTP (GET/PUT/POST/DELETE) request to the server at a
specified URL. In the Java Spring implementation, those requests are handled by Controller
classes. Those classes utilise annotations[16] that map HTTP requests onto specific handler
methods. For example, “@GetMapping(“/api/companies”)” is the annotation that will be used
above with the implementation of the method that handles GET requests at that URL. In the
method, all relevant information from the HTTP method is processed and passed to the
corresponding method of the service class. The service class checks the information for errors
and passes them to methods of the repository interface, which directly interacts with the
database. The repository interface extends the JpaRepository interface from the Spring Data
JPA library to use its wide range of default methods. For more specific queries, methods that
use annotations containing JPQL queries can are implemented [17]. A visual representation of
the backend architecture can be found in Fig. 7.

5.2 Design Choices

5.2.1 Page Navigation
Our first design decision entails how the users would navigate between all pages. The first
choice was to use a top navigation bar and the second was to use a sidebar. After discussing
this with EarnIT we settled for a sidebar because it looked more professional and it can fit the
entire EarnIT logo inside it while the top navigation bar cannot.

5.2.2 User registration
Our second design decision was about the registration of users. The options were to have two
separate registration pages on the application or have one that can accommodate both the
registration of companies and students. After having a meeting about this we decided that it
would be best to have one page where users can quickly change between student and company
registration instead of going to a different page.

5.2.3 Vacancy lifetime
Our third design decision concerns when a vacancy should disappear from the dashboard of all
students. Our first option was to immediately remove all vacancies for which a student is
accepted by a company. The other option we had was to keep those vacancies for a certain
period of time before removing them. We decided to go with the second option because if a
vacancy immediately disappears when a student is accepted, the other students that have not
received an answer may be confused as to what happened with their application. By keeping

31

filled-in vacancies on the student dashboard, all applicants can see the result of their
application

5.2.4 Student dashboard
Our fourth design decision takes into consideration whether are we going to show the basic
information about each company on the Student Dashboard. The options were to display that
information in the form of rows or cards. After discussing this with EarnIT and between
ourselves we decided to use a card design for the dashboard because a card can also fit a
company logo while a row would not have enough space.

5.2.5 Company details
Our final design choice is whether to show company details on the Student dashboard or create
an entirely new page for that. In this case, we came to the conclusion that it would be
preferable to show them on the same page because it is not a lot of information and the new
would look rather empty. Also, students will be able to instantly see the details of a vacancy
and apply for it instead of loading a new page.

32

Chapter 6 | Testing

This chapter discusses the testing plan for the front end and back end of the project and the
results. It specifies the functionalities for which the tests were performed and explains the
approach that was used.

Based on the testing results, some of the system designs were updated and bugs were identified
and dealt with.

6.1 Test Approach
The project focuses on writing tests to achieve the maximum coverage of most functionalities
in the application. Testing of the system was done using API Testing and Integration testing.
API Testing focuses on the back end side of the application. Integration testing focuses on the
application as a whole covering both the front end and back end of the application. The tests
are described in the sections below.

6.1.1 End-to-end Integrated Tests
The system was tested using end-to-end automated testing. The end-to-end software testing
method involves testing the application from start to finish. It mocks a real-life system user that
accesses and uses the software. End-to-end testing helps identify bugs and problems before
releasing software to users [13]. In end-to-end testing, a completely integrated system is used,
which also helps in checking the business logic.

6.2 Technology
Cypress is a JavaScript-based front-end testing tool. In this project, cypress is used as the
testing framework because of its ease of use and numerous features. Cypress works directly
with browsers, which makes testing fast and reliable. At first, the plan was to use Selenium but
we decided against it because it was a lot more time-consuming and gave errors with the
Vue.JS framework. Furthermore, Cypress provides step-by-step snapshots of commands
executed, which proves to be extremely helpful when debugging. Lastly, unlike Selenium,
Cypress does not require wait commands in test scripts, making it easier to run code [14].

33

6.3 Test Cases
The following test cases were used to examine the system:

● Login

The login page was tested using a valid email ID and password. A bearer ID token must
be provided for the test to pass. The test passes if the user logs in successfully and the
front end receives information about the user from the back end.

● Registration (Student/Company)

A simple registration test was made for both students and companies. The test consists of
checking whether the registration for students and companies works correctly. The data
for the form is prefilled. The automated test fills up the data on the registration page. The
test passes if the user is registered.

● Posting and Applying for a Vacancy (Student/Company)

In this test case scenario, a test was created where a company logs in and creates a
vacancy and posts it. Furthermore, the test consists of logging in as a student and
applying for the vacancy posted by the company. The test will pass when the student
successfully applies for the vacancy.

● Updating Personal Details (Student/Company)

In this test case scenario, a test was created to update personal information as a company
or student. A test was created with new details for an existing user. The test log’s in as the
user and updates personal information with new details. The test will pass when the
personal details of the user as updated.

● Administrator Functionality

In this test case scenario, a test case was created to check administration functionality and
the administrator homepage. The test will pass when the administrator can successfully
log in and view user profiles.

34

Chapter 7 | Future Work

7.1 Features

7.2.1 Reviewing
The first feature that can be added in the future is a review system between students and
companies. Students should be able to leave a review with an explanation for the company they
are working for which can help other students decide which company they should apply for. In
addition, companies should be able to leave reviews with feedback from students they
employed in order to help other companies with employment decisions.

7.2.2 Filtering
Another appropriate decision is for students to be able to filter and sort companies they see
based on their preferences. For example, this will help them to only see companies in their
region or ones that are searching for employees in their field of study. This will greatly help
students in finding companies that are fitting for them.

7.2.3 Notification
Moreover, we believe a notification system should be installed which will help students and
companies in having a much faster and cleaner employment process. For instance, students will
be receiving notifications on application and their email when a new vacancy is posted near
their region or in their field of study. Also, companies will receive notifications and emails
when a student applies for their vacancy, making the entire process much faster.

7.2.4 Login with third-party services
Last but not least we want to enable logging in with 3rd party services like your Google or
Microsoft account. We believe that users will find this feature very convenient because they
will not have to register and go through the process of filling in all their information. With just
the click of a few buttons, they will be able to link their existing accounts and quickly log into
the platform.

7.2 OpenAPI Specification
During the final presentation of this project feedback was given about how to document the
REST API, for this project a document was used with a self-designed method of doing this.

35

During the feedback, it was advised to use OpenAPI Specification (OAS) for this as this is the
standard to document REST APIs. This should be added to the project as it is a useful way to
discover how the application communicates without having to look through the source code or
network traffic to understand. The result of this is that the application is easier to maintain.

36

Chapter 8 | Evaluation

This chapter evaluates the project as a whole by discussing its planning, stating responsibilities
and task distribution within the team, and assessment of the team. Additionally, the chapter will
provide an ending to the design report with a conclusion.

8.1 Planning

Fig.8. Planning Gantt chart. Created with JetBrains YouTrack software

The project and the team were divided into two separate parts namely, front-end and back-end.
Each group had fixed deadlines spread throughout the 10 weeks of the project. The team had
benchmarks to achieve throughout the project duration. The Ghent chart shows the distribution
of the planning throughout the weeks.

Meetings with the client were held every Friday of each week in the module. During the
meetings, the progress of the project was discussed. Furthermore, feedback from the client was
used to update the requirements and the scope of the project. During the project lifecycle,
additional requests were made by the client which were taken into consideration while
planning the development of the product. The client requested monthly hours tracking

37

functionality for students to be added and to be able to visit students' profiles and download
their CVs. Moreover, throughout the whole project, the client made suggestions on the styling
of the platform and interface.

In hindsight, there were some problems with the project planning. The planning of the project
was focused mainly on developing the system in the first 7 weeks of the module. The
deliverables were planned to be completed during the last 3 weeks of the project.
Some unexpected reasons such as a few group members falling ill had an influence on the
project task schedule.

The focus was to ensure that the deliverable system to the client was completed and working
well. However, this led to the completion of the design report being delayed.

8.2 Responsibilities
The team was composed of individuals with various skill sets and experiences in frameworks
and technologies that were relevant to the project. Based on the level of experience and skill
set, the tasks were evenly distributed throughout the team. Since the team members had a
diverse set of skills and knowledge in different fields, this distribution was rather simple and
intuitive. The task distribution of the team is as follows:

● Wybe: Front end developer, Front end routing, Front end authentication, Firebase,
Front end login and registration, Requirements specification, Interface designer and
Presentation slides

● Dimitar: Back end developer, Database designer, Protocol designer, Student
functionalities, Application functionalities, Company functionalities, Vacancy
functionalities, Cross-entity functionalities, Invalid input handling, Presentation slides,
Poster Design, Head of Back end Management

● Pranav: Back end developer, Database designer, Security Implementation, Login
Functionality, Protocol designer, Integration Testing, Presentation Slides

● Yordan: Back end developer, Back end structure, Database designer, Presentation
slides

● Stefan: Front end Developer, Communication Manager with Supervisor and Client

The design report was written by everyone in the team, hence there is an equal contribution to
the design report by each team member.

38

8.3 Team Evaluation
The team had mostly the same ideas and values when it came to working on the project. The
frequent meetings online and constant communication via services such as Discord and
WhatsApp provided the opportunity to accommodate every member’s schedule and made the
team more coordinated, thus making working on the project easier. Differences in opinions
regarding the implementation of some aspects of the system were handled diplomatically and
democratically to avoid building unnecessary tension between members. To keep motivation
high, team members were encouraging and supportive of each other.

8.4 Conclusion
The project methodology ensured that the system development was completed and delivered
on time. Team meetings and project work were mostly online, however, this did not have a
negative effect on the development progress as meetings were done on a weekly basis and
constant communication between team members was present. This helped immensely in
keeping the team spirit strong and the weekly tasks clear and concise.

The aim of the project was to deliver a complete and error-free job-seeking platform for
students in the Netherlands, no matter their citizenship. Considering the possibility of the
source code being reused in the future, the development of a solid, bug-free system that did not
allow for invalid user inputs was essential.

As was already mentioned, the project resulted in a working system that fulfils the client’s
expectations and requirements. Once the Design Module is finished, Earn It will take the
system and either use it directly or take ideas from it and incorporate them into their existing
platform.

This project resulted in team members understanding the software development process and its
iterations better. Because of the scale and duration of the platform, the project provided insight
into the challenges and potential problems that often arise in a project’s lifecycle and between
teammates. Furthermore, all the team members gained experience and knowledge about
conducting interviews and communicating with clients. In addition, the development team was
able to learn a lot and work with new technologies that are being used for modern-day projects.

In conclusion, the design project was successful as it helped students to gain valuable
knowledge and more experience in working as a team for a client, which led to a working
platform suiting the client’s requirements.

39

References
1. https://www.cbs.nl/en-gb/news/2022/11/40-percent-international-first-year-students-at-dutc

h-universities#:~:text=Over%20the%20past%2016%20years,number%20stood%20at%203
3%20thousand.

2. L.E. Gomez, Patrick Bernet, 2019, Diversity improves performance and outcomes, Journal
of the National Medical Association, vol. 111(issue 4), p. 383-392
https://doi.org/10.1016/j.jnma.2019.01.006

3. R. Prieto-Diaz, Domain Analysis: An Introduction, Software Engineering Notes, vol 15,
https://dl.acm.org/doi/pdf/10.1145/382296.382703

4. MySQL :: Mysql 8.0: UUID support
5. S. Aggarwal, 2018, Modern Web-Development using ReactJS, International Journal of

Recent Research Aspects, vol. 5(issue 1), p. 133-137
6. SMART goals definitions,

https://www.atlassian.com/blog/productivity/how-to-write-smart-goals
7. HTTP request methods definition

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
8. Mestre, P., Madureira, R., Melo-Pinto, P., & Serodio, C. (2017). Securing RESTful Web

Services using Multiple JSON Web Tokens. In Proc. World Congress on Engineering 2017
(pp. 418-23).

9. Elngar, A. A., Arafa, M., Fathy, A., Moustafa, B., Mahmoud, O., Shaban, M., & Fawzy, N.
(2021). Items Page. Journal of Cybersecurity and Information Management (JCIM)
Volume, 6(1_2).

10. Dikanski, A., Steinegger, R., & Abeck, S. (2012, August). Identification and
implementation of authentication and authorization patterns in the spring security
framework. In The Sixth International Conference on Emerging Security Information,
Systems and Technologies (SECURWARE 2012), p. 14-30

11. https://spring.io/guides/gs/rest-service/
12. Gutierrez, F. (2016). Security with Spring Boot. In Pro Spring Boot. Apress, Berkeley, CA.

p. 177-209
13. Tsai, W. T., Bai, X., Paul, R., Shao, W., & Agarwal, V. (2001, October). End-to-end

integration testing design. In 25th Annual International Computer Software and
Applications Conference. COMPSAC 2001 (pp. 166-171). IEEE.

14. Taky, M. T. (2021). Automated Testing With Cypress.
15. Conrad, T. (2006). Postgresql vs. MySQL vs. commercial databases: It’s all about what you

need.
16. Spring Boot Annotations - javatpoint
17. JPA - JPQL (tutorialspoint.com)

40

https://www.cbs.nl/en-gb/news/2022/11/40-percent-international-first-year-students-at-dutch-universities#:~:text=Over%20the%20past%2016%20years,number%20stood%20at%2033%20thousand
https://www.cbs.nl/en-gb/news/2022/11/40-percent-international-first-year-students-at-dutch-universities#:~:text=Over%20the%20past%2016%20years,number%20stood%20at%2033%20thousand
https://www.cbs.nl/en-gb/news/2022/11/40-percent-international-first-year-students-at-dutch-universities#:~:text=Over%20the%20past%2016%20years,number%20stood%20at%2033%20thousand
https://doi.org/10.1016/j.jnma.2019.01.006
https://dl.acm.org/doi/pdf/10.1145/382296.382703
https://dev.mysql.com/blog-archive/mysql-8-0-uuid-support/
https://www.atlassian.com/blog/productivity/how-to-write-smart-goals
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://spring.io/guides/gs/rest-service/
https://www.javatpoint.com/spring-boot-annotations
https://www.tutorialspoint.com/jpa/jpa_jpql.htm

Appendices

41

Appendix A
Application Design

All page designs from the application.

Figure A.1: Registration page design

42

Figure A.2: Login page design

43

Figure A.3:Student dashboard page

44

Figure A.4: Student profile Page

Figure A.5: Company dashboard page

45

Figure A.6: Company profile page

Figure A.7: Post Vacancy page

46

Figure A.8: Admin Dashboard page

47

Appendix B

Protocol Document

A collection of all the main functionalities of the platform.

48

49

50

51

52

